

 1

Deep Space Network Scheduling Using Evolutionary
Computational Methods

Alexandre Guillaume1, Seugnwon Lee, Yeou-Fang Wang, Hua Zheng, Robert Hovden, Savio Chau, Yu-Wen Tung, Richard

J. Terrile
Jet Propulsion Laboratory, 4800 Oak Grove drive, 91109-8099 Pasadena CA

1alexandre.guillaume@jpl.nasa.gov , tel: 818-393-6899

Abstract—The Deep Space Network (DSN) is an
international network of antennas that supports all of
NASA’s deep space missions. With the increasing demand
of tracking time, DSN is highly over-subscribed. Therefore,
the allocation of the DSN resources should be optimally
scheduled to satisfy the requirements of as many missions
as possible. Currently, the DSN schedules are manually and
iteratively generated through several meetings to resolve
conflicts. In an attempt to ease the burden of the DSN
scheduling task, we have applied evolutionary
computational techniques to the DSN scheduling problem.
These methods provide a decision support system by
automatically generating a population of optimized
schedules under varying conflict conditions. These
schedules are used to decide the simplest path to resolve
conflicts as new scheduled items are added or changed
along the scheduled 26 weeks.12

This paper presents the specific approach taken to formulate
the problem in terms of gene encoding, fitness function, and
genetic operations. The genome is encoded such that a
subset of the scheduling constraints is automatically
satisfied. Several fitness functions are formulated to
emphasize different aspects of the scheduling problem. The
optimal solutions of the different fitness functions
demonstrate the trade-off of the scheduling problem and
provide insight into a conflict resolution process.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. CURRENT DSN SCHEDULING PROCEDURE1
3. OPTIMIZATION WITH A GENETIC ALGORITHM.....2
4. RESULTS ..3
5. FUTURE PROSPECTS AND IMPROVEMENTS4
6. CONCLUSION ...5
REFERENCES ...5
BIOGRAPHY ...5

1. INTRODUCTION

The Deep Space Network (DSN) is a collection of radio
antennas and their support hardware, software, and
personnel. Its primary function is to connect spacecraft with
their controllers at JPL and JPL’s partners. The DSN
network consists of three communication facilities spaced

1
1 1-4244-0525-4/07/$20.00 ©2007 IEEE
2 IEEEAC paper #1210, Version 2, Updated December 6, 2006

by 120 degrees (in longitude) from each other: the
Goldstone Deep Space Communications Complex in
California, the Madrid Deep Space Communications
Complex in Spain and the Camberra Deep Space
Communications Complex in Australia. This strategic
placement permits constant observation of spacecraft as the
Earth rotates. There are over 16 antennas in DSN to support
about 30 missions. Allocating these resources to support the
missions is a basic DSN scheduling problem. There are
many constraints to this scheduling problem. For example, a
mission can only be seen during certain period of time at
each antenna. We call this period of time view period. This
is related to the location of the antenna and spacecraft
trajectory. There are other types of constraints such as
equipment conflict, radio frequency interference, and work
crew availability. Besides single resource for single mission,
DSN also supports single resource for multiple spacecraft
and multiple resources for single mission. Roughly
speaking, there are about 500 schedule items in a week.
DSN normally performs hundreds of changes for each
week. DSN scheduling is a dynamic and continuous
environment where changes constantly occur [1][2].
Everything from calculating where to point the antennas to
the spacecraft tracking operations starts with an official
DSN schedule. Mission operations cannot be successful
without appropriate time reservations in the schedule. With
increasing demand of tracking support from missions, DSN
is currently over-subscribed. In order to make the best use
of the DSN resources, optimally allocating resources
becomes an important issue. We propose an evolutionary
computing approach to use Genetic Algorithm (GA) to
optimize the DSN schedule. Based on the simulation results,
the GA approach we are taking can reduce overall number
of schedule conflicts and produce a more efficient schedule.

2. CURRENT DSN SCHEDULING PROCEDURE

DSN scheduling involves multiple users with various types
of communication needs. This includes ground-based
science activities and spacecraft tracking. Each user and
activity has its unique needs and requirements. There are
three steps in the DSN planning: long-range planning, mid-
range scheduling, and near-real-time scheduling. Long-
range planning is from 1 year to more than 10 years from
now. In this timeframe, DSN forecasts future loads of the
network and determines the supportability level for each
mission. Mid-range scheduling is from 8 weeks to 1 year. In
this stage, initial schedule is generated based on the user
requirements negotiated in the long-range planning. Then
detailed negotiations start to eliminate conflicts in the
schedule. DSN schedulers coordinate the change activities
and resolve DSN conflicts. Project/mission schedulers are

 2

working with each other to come up with a solution
proposal. Through proposal exchange and meetings, a
virtually conflict-free schedule is generated toward the end
of this process interval. Near-real-time scheduling then
starts around 8-week boundary. It is within this time frame
that schedules are prepared to be ready for real-time
operation. DSN schedulers continue to negotiate with
project schedulers and handle contingencies through out the
process toward real-time.

There are two major scheduling issues in the mid-range and
near-real-time scheduling area: one is to generate an initial
schedule and the other one is to resolve conflicts when they
occur. In the current process, they are both labor-intensive.
Generating a feasible schedule is difficult. Generating an
optimal schedule is almost impossible. There is a large
number of combinations for allocations in a normal case
(such as 500 tracks in 16 antennas for a week). Human can
only try out certain amount of solutions based on her or his
experience. A normal computer may take months if not
years to explore all scheduling possibilities. Therefore an
optimization algorithm with reasonable turn around time is
preferred in this situation.

3. OPTIMIZATION WITH A GENETIC ALGORITHM

When all the requirements have been centralized, the
establishment of the schedule is equivalent to an
optimization problem with multiple constraints and
objectives. There are several efficient numerical techniques
to solve these kinds of problems: genetic algorithms,
simulated annealing, hill climbing, etc… Several reasons
motivated our choice of technique. First, over the years,
genetic algorithms have been used with great success to
explore complex search spaces and have demonstrated
human competitive improvement over conventional
methods [3]. Secondly, this technique is well suited to solve
scheduling problems [4]. Finally, we have both the expertise
in genetic algorithms and the knowledge of the DSN
operation. In this work, we present an evolutionary
approach to the scheduling problem of the Deep Space
Network.

We first construct the genome with the essential
characteristics of the forecast week. Each task is
characterized by an identification number, a duration, a set
up and tear down period and schedulable intervals (view
periods). The algorithm looks for candidate solutions
(schedules) among the different view periods. In this case,
the gene is simply an integer number (in minute) chosen
randomly between zero and the sum of all view periods. A
tracking number is assigned to each period so that when a
random number is chosen within the interval, it can be
traced back to a given schedulable interval. In other words,
this tracking number assures the mapping between the
phenotype and the genotype. There are typically about 500
tasks. As a first step towards establishing an efficient
scheduling tool for the Deep Space Network, we only
consider single events, e.g. disregard events involving
several, either, antennas (antenna arraying) or spacecrafts
(Multiple Spacecraft Per Antenna, MSPA). There are
usually 140 of those normal tasks that also possess
schedulable intervals. Each chromosome has therefore

around 140 genes. There are usually up to 50 different
schedulable intervals for each of these tasks.

Before further discussing the specifics of the genetic
algorithm, we describe the implementation details as the
optimization of the algorithm was greatly influenced by it.
In order to use the existing infrastructure, we use a
dedicated web service located at JPL. The public interface
to this service is achieved through a WSDL, or Web
Services Description Languages. The SOAP protocol is
used to exchange XML files between the users and the
service. The genetic algorithm is coded in C/C++. We used
the gSOAP toolkit to bind the XML data to a C++ structure.
So the genetic algorithm run on a client machine that make
conflict calls to the server at each iteration. Using the DSN
framework has the advantage that our code could readily be
inserted into the current DSN schedule tools. However,
having the computation and the conflict check performed at
two different points introduce a serious overhead as
approximately two thirds of each iteration is spent in
communication.

Each solution should fulfill numerous scheduling
objectives: 1) maximize the number of tasks without
conflicts, 2) maximize the mission coverage, 3) minimize
the number of conflicts, 4) minimize schedule items
overlaps. We initially built different fitness functions for
each objective. We then implemented a multi-objective
approach by simply building a fitness function as a linear
combination of different objectives. This allows us to fine
tune the fitness function by adjusting the relative weights of
each component. The number of tasks without conflict is
obtained by subtracting the number of tasks with conflicts
from the number of tasks in the corresponding schedule.
The total mission coverage is obtained by adding the
duration of each task without conflict. The number of
conflicts is given by the sum of the number of conflicts
from each task. Note that a task can have more than one
conflict so the number of conflicts is different from the
number of tasks with conflicts. Overlaps are determined by
the number of so-called facility conflicts which indicates
that more than one mission are assigned to the same
antenna/facility in some time period.

The program starts by requesting the current forecast week,
which is the schedule for the coming week that has been
optimized by the DSN scheduling team. Most of the time,
the forecast week is therefore conflict free. The
performance of our code can be simply evaluated by
comparing our solution to this original solution. The initial
population is chosen, as is customary in genetic algorithms,
by randomly picking the genes in the pool of possible
solutions (schedulable intervals).

We also implemented an evolution strategy for the mutation
step. Each gene starts with a different mutation step size
which is determined by 10 percent of the range of the gene.
As the number of generations increases, the size of the
mutation step decreases linearly We introduced this scheme
in order to explore the search space efficiently at the
beginning of the evolution process and to fine-tune the
search step as the solution gets close to the ideal solution.

 3

4. RESULTS

We present the results obtained from the forecast for the
second week of October, 2006. There were 412 tasks for
this week among which 153 were normal with schedulable
intervals. The fitness of the initial schedule was evaluated
before the initialization of the genetic algorithm. There were
343 tasks without conflict, 10.5 week mission coverage, 706
conflicts and 0 facility conflicts. These values are indicated
with a red horizontal line as a reference on Figure 1 to
Figure 4 (which correspond to objective 1) to 4)
respectively):

For this optimization problem, we have made a single
objective out of the four objectives listed in the section 3
with the relative weights of the four objectives being one 1
for objective 1), 2 for objective 2), 1 for objective 3) and 8
for objective 4). We chose these weights for different
reasons. First, we discovered over the course of our study
that minimizing the number of overlaps was the hardest
objective to fulfill which explains the relatively high
weight. Then, we gave the remaining weights equal
importance as an initial guess. However, objective 1) and 3)
are calculated with partly common information, which
explains why the weight of objective 2) is equal to the sum
of their weights. We used genetic algorithm parameters as
follows. The population size was 500, the replaced
population size for each generation 300, the mutation rate
0.02, the crossover probability 0.7 and the maximum
number of generation 500 . We used a binary tournament
parent selection scheme with 0.9 probability and a two-
point crossover for the recombination operator. We chose a

Figure 4: Evolution of objective 4) with the
number of generations. The red line indicates the
fitness of the initial schedule, equal to 0 overlap.

Figure 2: Evolution of objective 2) with the
number of generations. The red line indicates the
fitness of the initial schedule, equal to 10.5 week.

Figure 3: Evolution of objective 3) with the
number of generations. The red line indicates the
fitness of the initial schedule, equal to 706
conflicts.

Figure 1: Evolution of objective 1) with the number
of generations. The red line indicates the fitness of
the initial schedule, equal to 343 tasks without
conflict.

 4

Gaussian mutation operator with a mutation step that
increased linearly with the number of generation, starting at
10% of the upper bound defining a gene.

The genetic algorithm clearly outperforms the initial
schedule for three of the four objectives, as seen on Figure 1
to Figure 3. However, even though the relative weight for
the minimization of the number of overlaps is eight times
higher than the other objectives, the number of overlaps is
still higher (18) than the initial solution (0) after 700
generations (see Figure 4). It is also worth noticing that one
overlap between a given task i and task j appears as two
overlaps in our count (task i with task j, and task j with task
i). So, there are really 9 facility conflicts in the solution at
the 700th generation. Moreover, the program really operates
according to the few rules we described. In reality,
exceptions to these rules are used for human operations to
permit some flexibility and resolve conflicts. For instance,
some artificial tasks may be used by schedulers to fill in the
gaps and thus minimize the number of gaps between tasks.

We allowed the program to restart after 10 generations if no
progress was made. To confirm the utility and efficiency of
this process, we computed the diversity of the population
for different generations. There is no single measure for the
diversity. For a given generation, we calculated the distance
D defined as followed:

()! !
=

−
×

=
pop gN

p

N

j
jjp

gpop

xx
NN

D
1

2
,

1
, (1)

where xp,i is the gene i of the individual p. The diversity is
therefore expressed here in minutes. Npop represents the
number of individuals in a population and Ng the number of
genes. We implemented this change on a subsequent run
with the same initial forecast week but with different
relative weights (1, 2, 1, 16 respectively). The results were
somewhat comparable for the first three objectives but
worst for objective 4). The number of tasks without conflict
is shown along with the diversity on Figure 5Error!
Reference source not found.. We chose a higher mutation
probability of 0.05 for the restart process. As indicated by
the finite slope after the first three spikes, the restart process
is indeed efficient at improving the objective further.
Moreover, for this specific objective, 1), the two first
restarts allow the algorithm to find a better solution than the
initial forecast week (indicated by a red line on Error!
Reference source not found.). Logically, we found with
other experiments that the height of the peak indicating a
restart, was proportional to the restart probability.

5. FUTURE PROSPECTS AND IMPROVEMENTS

The results we show on Figure 1 to Figure 4, were the best
we obtained with this method for a single objective. Beside
the variation of the different parameters to optimize the
program, we tested our method with different forecast
weeks. To our surprise, we observed a spread in
performances. Most of the time, the program could reach
and beat the initial solution of the forecast week for the
three objectives 1), 2) and 3). However, some other times,
the program did not reach any of the four objectives
calculated for the initial solution. More than the difference
in missions from one week to the other, we think this fact
emphasizes the importance of other objectives and
constraints, and the need for human input to resolve in a
non-systematic fashion some hard conflicts.

There are many improvements possible. Since the time to
perform a simulation was mostly spent in communication
between the client and the server, a substantial amount of
time (about two thirds) could be gained by moving the
conflict check on the same machine that is running the
program. For this work we used a mutation step that was
calculated with respect to the upper bound of the gene.
However, it is possible to achieve the same upper bound of
the genes, e.g. the same sum of all schedulable intervals,
with two different series of schedulable intervals. The sum
of a few intervals can be equal to the sum of more, but
smaller intervals. A percentage doesn’t capture this
possibility. Since this program is supposed to, at least,
mimic the current scheduling process, and at most propose
alternative solutions, it would be logical to include most of
the constraints and objectives currently used.

We currently convert a multiple objective problem to a
single objective problem by weighting the multiple
objectives. The multiple objectives often compete with each

Figure 5: Diversity (purple curve) and number of
tasks without conflict (black curve) versus the
number of generations. The red line indicates the
fitness of the initial schedule, equal to 343 tasks
without conflict.

 5

other, which means that improving one objective is
accompanied by degrading other objectives. In such a
situation, the optimization problem leads to multiple optimal
solutions that demonstrate a trade-off between different
objectives rather than one single best solution that optimizes
all the objectives. Several algorithms are available for the
multi-objective optimization problem and can be easily
implemented into our evolutionary computing framework.

6. CONCLUSION

We proposed an evolutionary computational method to help
the scheduling process of the Deep Space Network. Using a
single objective approach, we were able to consistently
obtain solutions that would improve the current best
solution for three out of the four used objectives. We want
to emphasize that our results are obtained in one run from a
totally random population, whereas given DSN forecast
weeks are obtained from a limited number of changes made
in a mostly conflict-free schedule from the preceding week.
Considering, the proximity of our solution to the ideal
solution, in the last objective (minimizing the number of
facility conflicts), our program already constitutes a
potentially valuable tool for the DSN scheduling process.
Moreover, with the performances on the first three
objectives, we have a lot of leeway to make tradeoffs
between objectives and therefore we will most likely be
able to satisfy all four objectives used in this paper, when
we implement a multi-objective approach. For this reason,
we are optimistic that we will be able to propose a tool in
the near future that will both improve the quality of the
current schedule and generate alternative schedules meeting
most of the requirements.

REFERENCES

[1] C. Borden, Y.-F Wang, G. Fox, “Planning and Scheduling
User Services for NASA’s Deep Space Network,” NASA
Planning and Scheduling Workshop, 1997.

[2] Y.-F. Wang, A. Wax, R. Lam, J. Baldwin, and C.
Borden, “Collaborative Scheduling Using JMS in a
Mixed Java and .NET Environment,” IEEE
International Space Mission Challenges for Information
Technology (SMC-IT) Proceedings, pp. 505-512, July
2006.

[3] Terrile, R. J., Adami, C., Aghazarian, H., Chau, S. N.,
Dang, V. T., Ferguson, M. I., Fink, W., Huntsberger, T.
L., Klimeck, G., Kordon, M. A., Lee, S., von Allmen, P.
A. and Xu, J. (2005) “Evolutionary Computation
Technologies for Space Systems” IEEE Aerospace
Conference Proceedings, Big Sky, MT, March 2005.

[4] Johnston, Mark D. (2006) “Multi-Objective Scheduling
for NASA’S Future Deep Space Network Array”,
International Workshop on Planning and Scheduling In
Space Proceeding, October 22-25, 2006.

BIOGRAPHY

Alexandre Guillaume is a member of the information
systems and computer science staff at the Jet Propulsion
Laboratory. His recent work includes genetic
algorithm application, quantum computing theory,
experiments on superconducting devices and materials
modeling. His work has been published in peer reviewed
journals. He has a Ph. D. in Physics from the Joseph
Fourier University in Grenoble (France).

Seungwon Lee is a senior member of information systems
and computer science staff at the Jet Propulsion
Laboratory. Her recent work includes genetic algorithm
application, high performance computing, materials
modeling, and nonlinear dynamics system. Her work is
documented in numerous journals and conference
proceedings. She has a B.S. and M.S. in Physics from Seoul
National University in Korea, and has a Ph. D in Physics
from Ohio State University.

Robert Hovden is an Academic Part Timer student
employee at JPL, who is about to graduate from Georgia
Tech, with a bachelors in Physics. He spent two summers
working at JPL and his main focus is Genetic Algorithm
related research. While at Georgia Tech he was employed
as a math teaching assistant for two years. Robert's
contribution to the scheduling and sequencing task include
the implementation of SOAP messaging interface used in
communicating with the Deep Space Network servers.

Hua Zheng (AKA Will) is a software engineer in the Flight
Avionics section at JPL. He has been involved in various
research projects in the past related to wireless avionics,
reconfigurable logic, fault-tolerant computing, and
evolutionary computation. He is also a member of the Mar
Science Laboratory avionics design team. His specialties
include software development with GNU software, Linux
device drivers, and FPGA development. Zheng has a BS
degree in Computer Engineering from the University of
California, Irvine, and is currently working on his MS

 6

degree in Computer Science at California State University,
Los Angeles.

Savio Chau is a principal engineer and group supervisor at
the Jet Propulsion Laboratory of the
California Institute of Technology. He
has 24 years of industrial experience
in both research and development. He
is currently the lead engineer of the
Command and Data Handling
Subsystem of the Jovian Icy Moon
Orbiter project. He is also leading two

technology development projects in the applications of
Genetic Algorithm and the advanced data bus architecture
for spacecraft. He has been a lecturer in the Computer
Science Department at the University of California, Los
Angeles. He current research interests include modular,
high performance, intelligent, and ultra long life flight
systems that utilize techniques from reconfigurable and
evolvable hardware, neural network, genetic algorithms,
fuzzy logic, and other biology-inspired techniques. He has 4
refereed journal publications, 20 conference papers, 2
patents, and 1 pending patent. He was the program co-
chair of the 2002 Pacific Rim International Symposium on
Dependable Computing (PRDC2002). He earned his BS in
electrical engineering from Loyola Marymount University,
Master of Engineering from California State Polytechnic
University, Pomona, and Ph.D. in computer science from
University of California, Los Angeles. He is a member of
Tau Beta Pi and Eta Kappa Nu.

Yu-Wen Tung is a senior member of
JPL with more than 15 years of
experience in mission software design,
development and management. His
research interests include modeling,
simulation, parallel computing
algorithms, software architecture, and
model checking verification/validation
techniques. He holds a Ph.D. degree in Electrical/Computer
Engineering from the University of Southern California.
Currently he is the group supervisor of the Modeling and
Simulation for Planning and Execution Systems group in
JPL.

Yeou-Fang Wang is a senior member in the Planning and
Execution Systems Section at the Jet Propulsion
Laboratory. He has developed methodologies and tools for
antenna load forecasting and scheduling systems for
NASA’s Deep Space Network. He has authored several
journal and conference papers in the fields of artificial
Neural Networks and scheduling. Dr. Wang’s recent work
includes automatic schedule generation algorithm
development using computational intelligence,
collaborative engineering, service oriented software

architecture design, and multi-agent systems application.
He has BS degree in Control Engineering from the National
Chiao-Tung University of Taiwan and MS and PhD in
Electrical and Computer Engineering from the University of
California, Irvine.

Richard J. Terrile created and directs
the Center for Evolutionary
Computation and Automated Design
at NASA’s Jet Propulsion Laboratory.
His group has developed genetic
algorithm based tools to improve on
human design of space systems and
has demonstrated that computer aided
design tools can also be used for
automated innovation and design of
complex systems. He is a planetary astronomer and the co-
discoverer of the Beta Pictoris circumstellar disk. Dr.
Terrile has B.S. degrees in Physics and Astronomy from the
State University of New York at Stony Brook and an M.S.
and a Ph.D. in Planetary Science from the California
Institute of Technology in 1978.

 7

